

The young side of LIMPHOMA

gli under 40 a confronto

Verona, Centro Congressi Camera di Commercio 26-27 settembre 2025

Novità nella definizione del rischio nel MCL

Giulio Eugenio Mandelli

S.C. Anatomia Patologica – ASST degli Spedali Civili di Brescia

Disclosures of Name Surname


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Johnson & Johnson	X		X				

Prognostic factors: old and new (?)

Current clinical use	Potential future use				
Age	MCL35 RNA expression analysis				
Performance status	Measurable residual disease testing				
CNS involvement at diagnosis	Somatic mutations (e.g. in NOTCH1 and others)				
Stage of disease (I and II vs III and IV)	FDG PET				
Serum level of B2M					
Serum level of LDH					
Morphology (classic vs blastoid)					
MCL International Prognostic Index (MIPI)					
Ki-67 (< 30% vs ≥ 30%) and inclusion into combined-MIPI					
p53 expression by immunohistochemistry TP53 mutations/deletions by sequencing analysis					

WHO Classification of Tumours, 5th Edition, Volume 1: Hematolymphoid Tumours, IARC (International Agency for Research on Cancer), 2022 Silkenstedt E, Dreyling M. Mantle cell lymphoma-Advances in molecular biology, prognostication and treatment approaches. Hematol Oncol. 2021 Jun;39

In your center, the pathologist's report includes

Prognostic factors: state of the art

Features	Newly diagnosed MCL	R/R MCL*
Accepted ultra-high-risk features	De novo blastoid or pleomorphic histology with high-risk mutations ⁴⁰ Ki-67% ≥50%† in involved tissue biopsy with blastoid or pleomorphic histology ^{12,41} ‡TP53 mutation (R273) with other high-risk gene mutations (KMT2D, NSD2, CCND1, NOTCH1, CDKN2A, NOTCH2, or SMARCA4 mutations) and extensive disease burden ⁴² CNS involvement with systemic disease ⁴³	Transformed blastoid or pleomorphic histology (transformed from classic histology; ie, disease resistant to BTKi, venetoclax, and anti-CD19 CART) ⁴⁰ Primary BTKi-refractory disease ¹² Refractory to ≥3 previous lines of standard therapy (including BTKi) ¹² Triple-resistant MCL (disease resistant to BTKi, venetoclax, and anti-CD19 CART) ^{12,33}
Accepted high-risk features	Blastoid or pleomorphic histology 40 Ki-67 ≥50%† in involved tissues with classic histology 12,41 TP53 mutation 14 and/or del(17p) by FISH, TP53 overexpression by IHC, and/or non-TP53 mutations (NOTCH1/NOTCH2, KMT2D, NSD2, and SMARCA4 mutations) 44 CK 45 MYC rearrangement and/or amplification 46-50 TP53 expression in >50% of cells or a high combined MIPI score Simplified MIPI score ≥6.2 51 Bulky disease	High-risk features for patients with newly diagnosed disease 12 ≤2 previous lines of standard therapy Progression within 24 months of first-line therapy MRD ⁺ status after therapy§

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695

Prognostic factors: state of the art

Features	Newly diagnosed MCL	R/R MCL*
Accepted ultra-high-risk features	De novo blastoid or pleomorphic histology with high-risk mutations ⁴⁰ Ki-67% ≥50%† in involved tissue biopsy with blastoid or pleomorphic histology ^{12,41} ‡TP53 mutation (R273) with other high-risk gene mutations (KMT2D, NSD2, CCND1, NOTCH1, CDKN2A, NOTCH2, or SMARCA4 mutations) and extensive disease burden ⁴² CNS involvement with systemic disease ⁴³	Transformed blastoid or pleomorphic histology (transformed from classic histology; ie, disease resistant to BTKi, venetoclax, and anti-CD19 CART) ⁴⁰ Primary BTKi-refractory disease ¹² Refractory to ≥3 previous lines of standard therapy (including BTKi) ¹² Triple-resistant MCL (disease resistant to BTKi, venetoclax,
Accepted high-risk features	Blastoid or pleomorphic histology 40 Ki-67 ≥50%† in involved tissues with classic histology 12,41 TP53 mutation 14 and/or del(17p) by FISH, TP53 overexpression by IHC, and/or non-TP53 mutations (NOTCH1/NOTCH2, KMT2D, NSD2, and SMARCA4 mutations) 44 CK 45 MYC rearrangement and/or amplification 46-50 TP53 expression in >50% of cells or a high combined MIPI score Simplified MIPI score ≥6.2 51 Bulky disease	biology of MCL Hic disease 12 ≤2 previous lines of standard therapy Progression within 24 months of first-line therapy MRD+ status after therapy§

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695

Prognostic factors: state of the art

pattern of resistance to treatments

R/R MCL*

Transformed blastoid or pleomorphic histology (transformed from classic histology; ie, disease resistant to BTKi, venetoclax, and anti-CD19 CART)⁴⁰

Primary BTKi-refractory disease 12

Refractory to ≥3 previous lines of standard therapy (including BTKi)¹²

Triple-resistant MCL (disease resistant to BTKi, venetoclax, and anti-CD19 CART)^{12,33}

High-risk features for patients with newly diagnosed disease¹²

≤2 previous lines of standard therapy Progression within 24 months of first-line therapy⁵² MRD⁺ status after therapy§

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695

Recognizing high-risk MCL: new tips

- > Recommended Ki67 cut-offs of 50%
 - The Ki-67% combined with the simplified MIPI score, is an independent prognostic indicator in MCL
 - high Ki-67% (≥50%) had significantly shorter OS than those with a low Ki-67% (20 vs 118 months).

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695 Jain Pet al. Genomic profiles and clinical outcomes of de novo blastoid/pleomorphic MCL are distin ct from those of transformed MCL. Blood Adv. 2020;4(6):1038-1050.

Recognizing high-risk MCL: new tips

- Cytogenetic assessment for complex karyotype (CK)
 - A CK and/or complex chromosomal rearrangements, breakage, fusion, and genomic instability are associated with an aggressive clinical course
 - A CK at initial diagnosis is linked to a significantly shorter OS after chemotherapy → median of 4.5 vs 11.6 years
 - Patients with a secondary acquired CK had worse survival than those with a de novo CK

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695 Greenwell IB et al.Complex karyotype in patients with mantle cell lymphoma predicts inferior survival and poor response to intensive induction therapy. Cancer. 2018;124(11):2306-2315

Recognizing high-risk MCL: new tips

- > Next-generation sequencing is recommended to detect somatic mutations
 - Best solution for multigene testing
 - Mutations in TP53, KMT2D, NSD2, CCND1, NOTCH1, NOTCH2,
 CDKN2A, NOTCH2 and other genes correlated with aggressive MCL
 - Somatic mutations in *TP53, KMT2D, NSD2, SMARCA4, CCND1, TRAF2, NFKBIE* genes are reported with **ibrutinib resistance**
 - change in mutational status from baseline samples to samples at disease progression → re-testing (?)

Jain P, Wang M. High-risk MCL: recognition and treatment. Blood. 2025 Feb 13;145(7):683-695

Khouja M e al. Comprehensive genetic analysis by targeted sequencing identifies risk factors and predicts patient outcome in Mantle Cell Lymphoma: results from the EU-MCL network trials. Leukemia. 2024 Dec;38(12):2675-2684

Hill HA et al. Genetic mutations and features of mantle cell lymphoma: a systematic review and metanalysis. Blood Adv. 2020;4(13):2927-2938.

The young side of LYMPHOMA

SOX-11 oncogene • +CD70⁺CD27⁺ Tregs

- +Angiogenesis PDGFA
- +Cell adhesion FAK kinase
- +Musashi-2

Cyclin D dysregulation

- Truncation 3' UTR
- Higher expression of cyclin D signature
- CDKN2A deletion (9p21.3)

Unstable genome

- High aneuploidy
- Recurrent breakage fusion bridge cycles
- Chromothripsis
- High CNA, SV's

BCR and NFkB

• NFKBIE mutations

Blastoid/

Pleomorphic

MCL

High risk

MIPI

U-IGHV

MRD +

disease

- CARD11/BCL10/MALT1 pathway
- PI3K/AKT/mTOR pathway
- Alternate NFkB pathway mutations - BIRC3, TRAF2

Lymphoid microenvironment

- "Immune depleted" TME
- Exhausted T cells
- High CD163⁺ macrophages and high Tregs
- CSF-1R axis and tumor associated macrophages
- SOX-11+CD70+CD27+ Tregs
- High CCL3, CCL4, CXCR4

Epigenetic

- PRMT5 upregulation
- DNMT3A-MEF2B and MYC-OXPHOS axis
- + EZH2
- NSD2 GOF mutations
- KMT2D LOF mutations
- SMARA4/SWI mutations

aberrations

- Higher EpiCMIT score

Miscellaneous

- NOTCH1, NOTCH2 GOF mutations
- + CTPS1
- HNRNPH non-coding mutations
- Aberrant mRNA processing
- High IL-2R
- + TIGIT and + MDSCs
- Transcription regulation -UBR5 mutations
- BACH2 downregulation
- HSP90-MYC-CDK9 axis

TP53 aberrations High Ki-67%

POD-24 High-risk MCL

Non-TP53 MYCR mutations

© 2024 The Board of Regents of the University of Texas System

Metabolic reprogramming

- + OXPHOS pathway overactivation in ibrutinib-resistant MCL
- + EGR1
- DNMT3A-MEF2B and MYC-OXPHOS axis

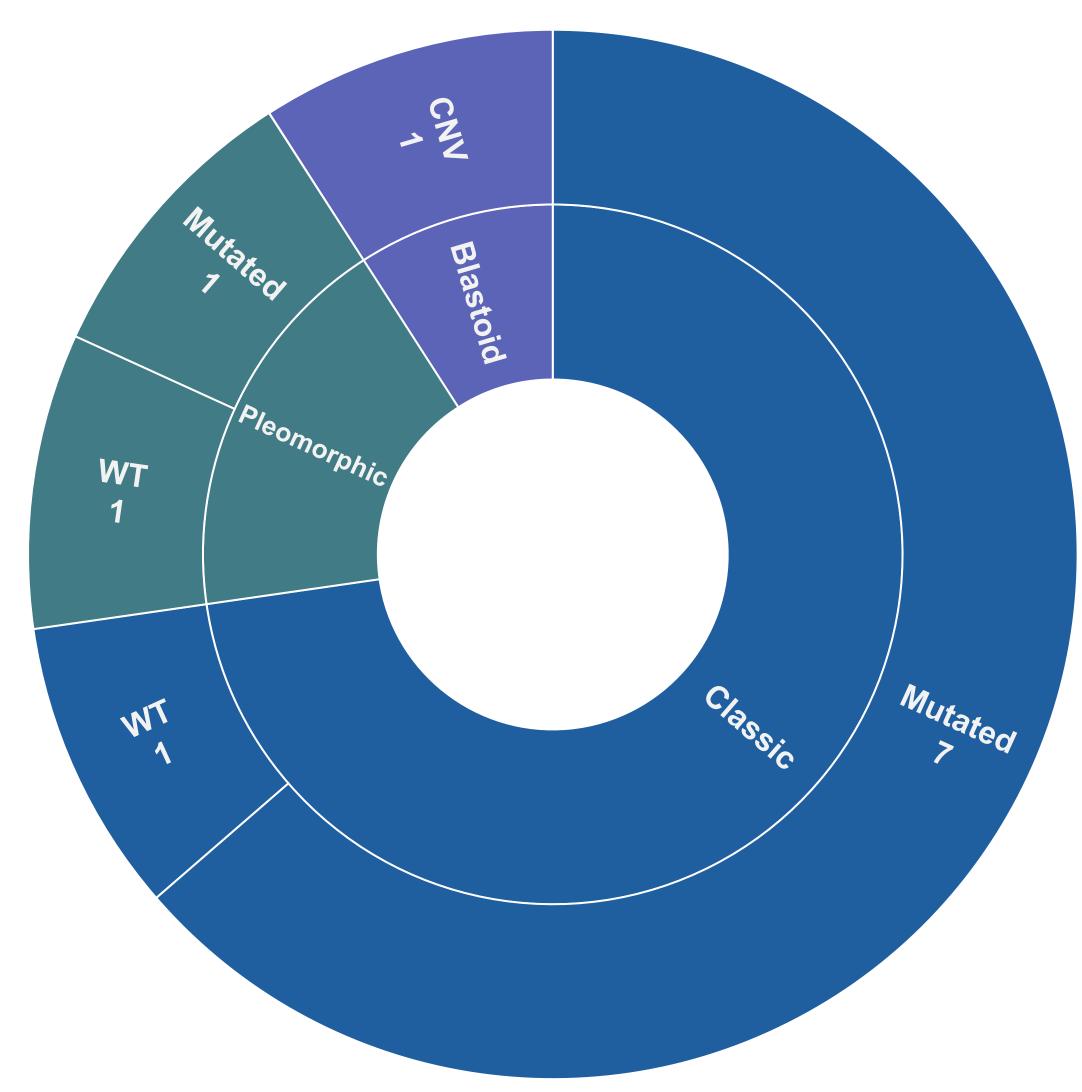
Relapsed disease

- ≥ 3 prior lines (with BTKi resistance)
- Disease transformation
- Triple-resistant MCL (BTKi, BCL2i and anti-CD19 CART)

Which new prognostic test/marker is used at your center?

73 genes targeted NGS panel SNV – INDEL – CNV 🔆 SOPHiA GENETICS™

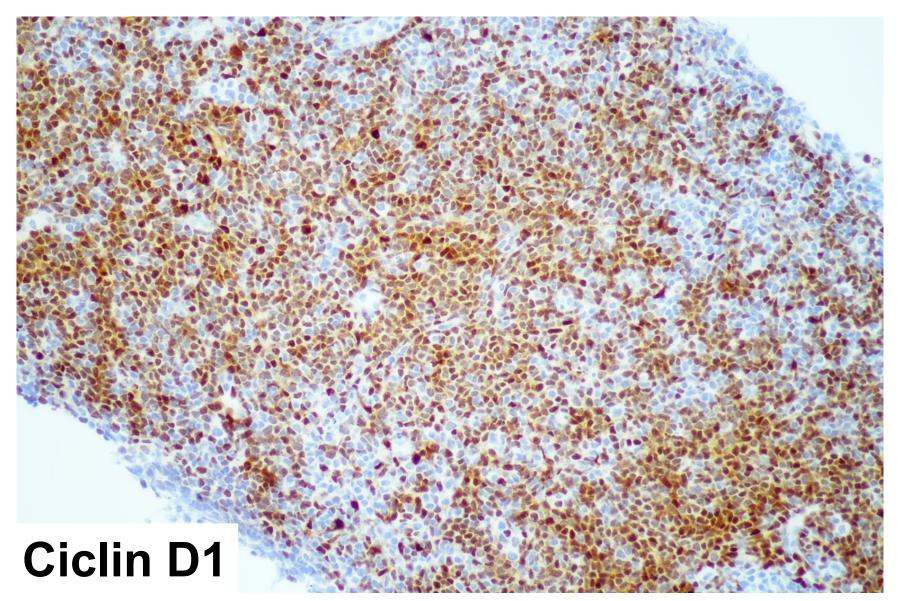
ARID1A	CREBBP	KRAS	STAT3
ATM	CXCR4	MAP2K1	STAT5B
B2M	DDX3X	MEF2B	STAT6
BCL2	DNMT3A	MFHAS1	TBL1XR1
BCL6	EP300	MYC	TCF3
BCOR	ETV6	MYD88	TET2
BIRC3	EZH2	NFKBIE	TNFAIP3
BRAF	FAT1	NOTCH1	TNFRSF14
BTG1	FBXW7	NOTCH2	TP53
BTK	FOXO1	NRAS	TP63
CARD11	GNA13	PIM1	TRAF2
CCND1	HIST1H1E	PLCG1	TRAF3
CCND3	ID3	PLCG2	XPO1
CD28	IDH2	PRDM1	
CD58	INPP5D	PTEN	
CD79A	IRF4	PTPRD	
CD79B	ITPKB	RHOA	
CDKN2A	JAK3	SETD2	
CDKN2B	KLF2	SF3B1	
CIITA	KMT2D	SOCS1	

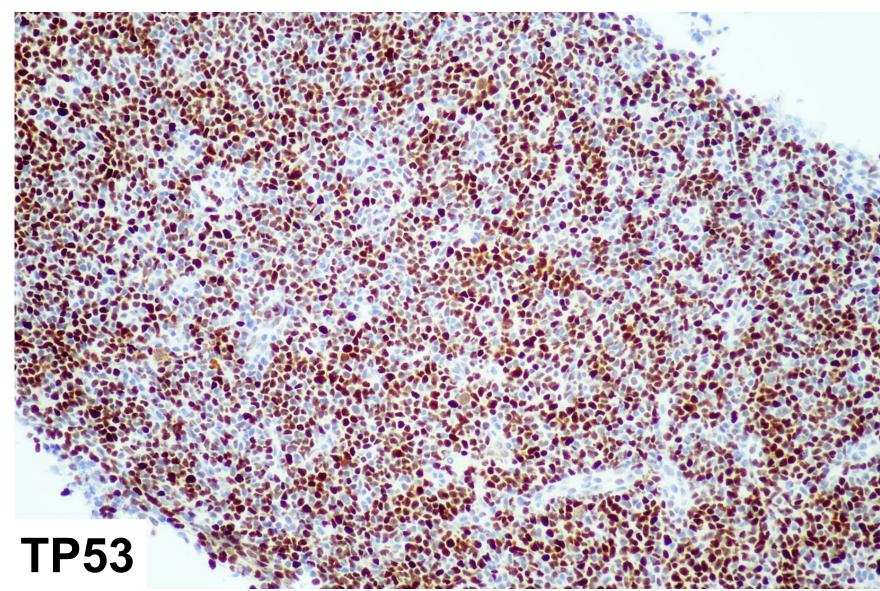

Cohort and Samples

N patients		11	
Age		47-81 (median 66)	
Sex	male	8	
Jex	female	3	
	classic	8	
Histology*	blastoid	2	
	pleomorphic	1	
Ki67 index	≥30%	7	
Kio/ illuex	<30%	4	
P53 IHC	>50%	3	
РЭЗ ІПС	≤ 50%	5	
NAID1	LR	5	
MIPI (classic)	IR	1	
(Classic)	HR	4	
NGS timina	onset^	6	
NGS timing	relapse°	5	

- * All cases Ciclin D1+
- ^ All cases presented at Stage 4a
- NGS testing only at relapsed disease and corresponding tissue/BM
 - 7 Lymph Node FFPE
 - 1 Skin Biopsy FFPE
 - 1 Salivary Gland FFPE
 - 3 Bone Marrow EDTA

Mutational landscape


	GENE	MUTATION	VAF				
#1	BIRC3	c.1704_1727del p.(Phe569_Val576)del	50,5%				
#2	ATM	1,20%					
#3	Wild Type						
#4	ATM c.9022C>T p.(Arg3008Cys) 56,80%						
#5	BIRC3	c.1540_1541del p.(Leu514Alafs*4)	14,40%				
#3	TP53	c.764_766del p.(lle255del)	32,40%				
#6	KMT2D	c.12466dup p.(Gln4156Profs*12)	30,30%				
#0	TP53	c.814G>T p.(Val272Leu)	73,80%				
#7	CCND1	c.142G>C p.(Val48Leu)	42,6%				
#8	CREBBP	c.5837del p.(Pro1946Hisfs*30)	1,7%				
#0	BIRC3	c.1580-1G>A	1,2%				
#9		Wild Type					
	KMT2D	c.15566G>T p.(Gly5189Val)	25,40%				
#10	TP53	c.722C>A p.(Ser241Tyr)	23,90%				
	TP53	c.672+1G>T	25%				
#11		CNV BCL2 and MYC					



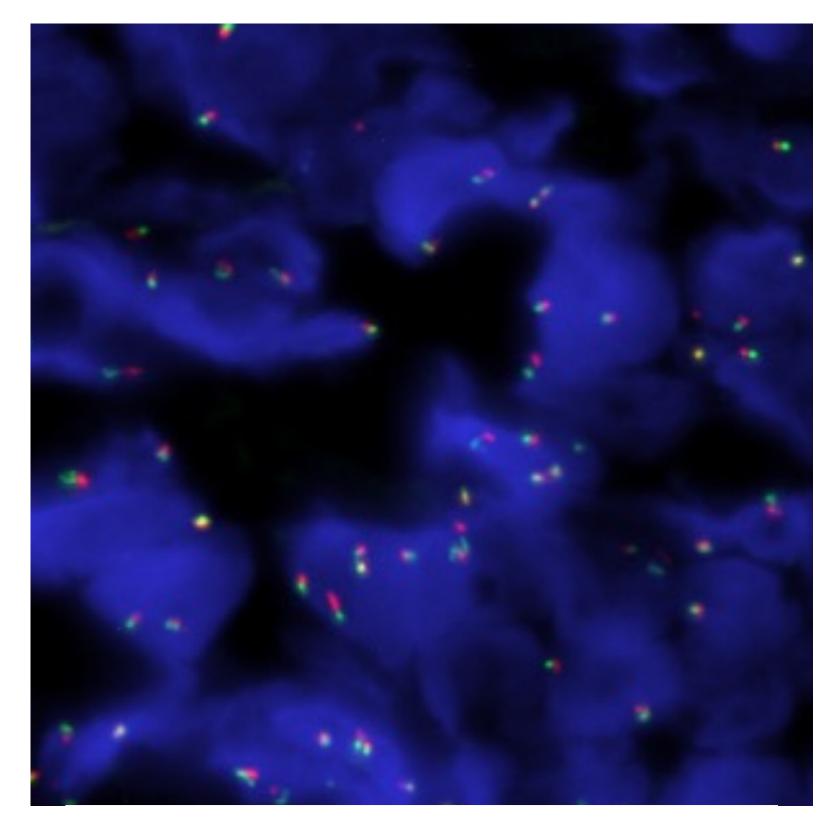
p53 IHC and TP53 mutation

	GENE	MUTATION	VAF
#5	BIRC3	c.1540_1541del p.(Leu514Alafs*4)	14,40%
#3	TP53	c.764_766del p.(Ile255del)	32,40%
#6	KMT2D	c.12466dup p.(Gln4156Profs*12)	30,30%
#0	TP53	c.814G>T p.(Val272Leu)	73,80%
	KMT2D	c.15566G>T p.(Gly5189Val)	25,40%
#10	TP53	c.722C>A p.(Ser241Tyr)	23,90%
	TP53	c.672+1G>T	25%

- > 3/3 TP53 mutated cases had >50% p53 protein expression in IHC
- > 5/8* TP53 wild type cases had ≤ 50% p53 protein expression in IHC

^{*} IHC NA in 3 cases

CNV confirmed in FISH as CN gain


	GENE	MUTATION	VAF
#11		CNV BCL2 and MYC	

Prognostic relevance:

- > MYC rearrangement
- > BCL2 amplification

Wang L et. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica. 2021 May 1;106(5):1381-1389

Khouja M e al. Comprehensive genetic analysis by targeted sequencing identifies risk factors and predicts patient outcome in Mantle Cell Lymphoma: results from the EU-MCL network trials. Leukemia. 2024 Dec;38(12):2675-2684

MYC FISH – break apart probe

Onset-tested cohort

	Age	MIPI	Histo	Ki67	Mutation	Therapy I Line	Response	Notes
#1	70	IR	С	50%	ATM	RBACx6+RTT +RTX maintenance	PR	
#2	47	LR	С	15%	Wild Type	Watch and Wait	SD	Last FU 25/06/2025
#3	63	HR	C	5%	BIRC3 TP53	RCHOP-RDHAP	RC	ASCT suspended for complication; programmed RTX maintenance
#4	81	HR	С	5%	BIRC3 CREBBP	R-Bendamustin lower dose	Ongoing (responding)	IRC → dialysis at onset
#5	73	HR	Р	55%	Wild Type	RBACx6	RC	
#6	59	LR	P	90%	TP53 KMT2D	RCHOP-RDHAP ASCT FEAM	RC	Aug2025-Nov2025 → Watch and Wait; programmed RTX maintenance

Onset-tested cohort

	Age	MIPI	Histo	Ki67	Mutation	Therapy I Line	Response	Notes
#1	70	IR	С	50%	ATM	RBACx6+RTT +RTX maintenance	PR	
#2	47	LR	С	15%	Wild Type	Watch and Wait	SD	Last FU 25/06/2025
#3	63	HR	С	5%	BIRC3 TP53	RCHOP-RDHAP	RC	ASCT suspended for complication; programmed RTX maintenance
#4	81	HR	С	5%	BIRC3 CREBBP	R-Bendamustin lower dose	Ongoing (responding)	IRC → dialysis at onset
#5	73	HR	Р	55%	Wild Type	RBACx6	RC	
#6	59	LR	P	90%	TP53 KMT2D	RCHOP-RDHAP ASCT FEAM	RC	Aug2025-Nov2025 → Watch and Wait; programmed RTX maintenance

Onset-tested cohort

	Age	MIPI	Histo	Ki67	Mutation	Therapy I Line	Response	Notes
#1	70	IR	С	50%	ATM	RBACx6+RTT +RTX maintenance	PR	
#2	47	LR	С	15%	Wild Type	Watch and Wait	SD	Last FU 25/06/2025
#3	63	HR	C	5%	BIRC3 TP53	RCHOP-RDHAP	RC	ASCT suspended for complication; programmed RTX maintenance
#4	81	HR	С	5%	BIRC3 CREBBP	R-Bendamustin lower dose	Ongoing (responding)	IRC → dialysis at onset
#5	73	HR	Р	55%	Wild Type	RBACx6	RC	
#6	59	LR	P	90%	TP53 KMT2D	RCHOP-RDHAP ASCT FEAM	RC	Aug2025-Nov2025 → Watch and Wait; programmed RTX maintenance

Relapsed-tested cohort

	Age	MIPI	Histo	Ki67	Mutation	DFS* (m)	Therapy I Line	Therapy II Line	Res I	Res 2	Notes
#1	76	LR	С	70%	ATM	185	prot. R-HDS con 2° Mel	Ibrutinib	RC	RP	
#2	66	LR	С	30%	KMTD2 TP53	43	RCHOP-RDHAP +ASCT FEAM +RTX maintenance *	Ibrutinib	RC	Ongoing	*suspendend cause ICU for COVID
#3	61	LR	С	50%	BIRC3	95	RCHOP-RDHAP +ASCT FEAM	Ibrutinib	RC	RP	ASCT suspended for complication; programmed RTX maintenance
#4	74	HR	В	70%	CNV BLC2 MYC	28	RBACx6	Ibrutinib → Pirtoprutinib*	RC	RC	*switch cause of toxicity

^{*}DFS calculated from the end of I line therapy to the time of relapse **NOTE**: one patient tested in NGS (relapsed) is being followed by another hematology center

Take home messages

- Talk to your pathologist/biologist
- Trust p53 immunohistochemistry
- NGS for multigene testing

Open questions

- Should we switch to 50% cut-off for Ki-67?
- On which specimen should karyotyping be performed?
- Should we test MYC and TP53 by FISH always?

Ringraziamenti

Sistema Socio Sanitario

S.C. Anatomia Patologica
A.S.S.T. Spedali Civili di Brescia
Università degli Studi di Brescia
Prof.ssa Luisa Lorenzi
Dott.ssa Flavia Melotti
Dr. Mattia Facchetti
Dr. lacopo Ghini

Laboratorio Patologia Molecolare
Dr.ssa Medicina Daniela
Dr.ssa Galvagni Anna
Prof William Vermi
Tecnici di Laboratorio

Reparto di Ematologia
A.S.S.T. Spedali Civili di Brescia
Dr.ssa Alessandra Tucci
Dr Alessandro Re
Dr.ssa Chiara Pagani

Laboratorio Ricerca in
Ematopatologia
Dr. Gallucci Daniele
Dr.ssa Silvia Lonardi
Dr.ssa Emma Albertini
Dr.ssa Francesca Filippini